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Nanoindentation experiments have been used to inves-
tigate mechanical properties of polymeric thin films. In
this paper, the problem is modeled as normal inden-
tation of a viscoelastic half-space by a rigid smooth
frictionless axisymmetric polynomial indenter. An an-
alytical solution, which relates the indentation load to
the penetration depth, is presented. The solution is valid
as long as the contact region is simply connected and
the indenter is in complete contact with the half-space.
It shows that a similar fundamental relation exists in
Laplace space. For a viscoelastic material with a fixed
Poisson’s ratio, constant-load indentation tests are di-
rect measurements of the material’s creep function, and
constant-displacement tests are direct measurements of
its stress relaxation function. The theory shows that the
nanoindentation technique is also a useful tool to obtain
viscoelastic properties of thin films.

When an axisymmetric punch indents normally into
a half-space, there are two possibilities: one is that the
whole punch surface contacts with the half-space; the
other is that only part of the punch contacts with the
half-space. Following the terminology by Gladwell [1],
the first contact is called complete, and the second one
is termed incomplete. In the second case, the contact
pressure will drop to zero at the boundary of the con-
tact region. Incomplete contact of a viscoelastic half-
space has been treated by Lee and Radok [2], Graham
[3, 4] and Ting [5, 6]. However, their formulations are
generally complicated and difficult to use in the in-
terpretation of indentation data. There are also some
restrictions, e.g., the contact area does not decrease un-
der Graham’s approach. In this paper, only complete
contact is considered. The main advantage of complete
contacts is that the contact area is constant. This sim-
plifies both the theoretical analysis and the experimen-
tal procedure. As the final result shows, the obtained
solution is simple and easy to use for the indentation
application.

We consider a rigid frictionless axisymmetric inden-
ter with a polynomial profile and the axis of revolution
as the z-axis, indenting normally into the plane z = 0
of a viscoelastic half-space z ≥ 0. The problem is con-
sidered in the linear theory of viscoelasticity and the
half-space is assumed to be isotropic and homogeneous.

The following equations give the relevant displace-
ments and stresses. The vertical component of the dis-
placement is denoted by uz, and the stress components
have two subscripts corresponding to the appropriate
coordinates. E(t), J (t) and ν(t) are the stress relax-

ation function, creep function and Poisson’s ratio of
the viscoelastic half-space.

The governing equations for the viscoelastic half-
space are:

2εij(r, z, t) = ui,j(r, z, t) + uj,i(r, z, t)

(Compatibility equation) (1)

σij(r, z, t) =
∫ t

−∞

[
2G(t − τ )

∂εij(r, z, τ )

∂τ

+ δijλ(t − τ )
∂εkk(r, z, τ )

∂τ

]
dτ

(Boltzmann superposition principle), where G(t)

and λ(t) are the relaxation moduli. (2)

σij,j(r, z, t) = 0 (Force equilibrium) (3)

As Fig. 1 shows, the boundary conditions for the
indentation problem are

τzr(r, 0, t) = τzθ (r, 0, t) = 0, (0 ≤ r < ∞) (4)

σzz(r, 0, t) = 0, (r > a) (5)

uz(r, 0, t) = h(t) +
αn∑

α=α1

aαrα, (0 ≤ r ≤ a) (6)

where α is a positive real number, and h(t) is the inden-
tation depth. The second term at the right hand side of
Equation 6 describes the indenter shape.

Initially, no interaction happens between the indenter
and the half-space, and we have the initial conditions:

εij(r, z, t) = σij(r, z, t) = 0, (−∞ < t ≤ 0) (7)

h(t) = 0, (−∞ < t ≤ 0) (8)

Conditions of (7) and (8) and complete contact restric-
tion are important in the following derivation; other-
wise, elastic-viscoelastic corresponding principle can-
not be used directly.

Assuming Laplace transforms of all the time vari-
ables exist, we have the corresponding equations in
Laplace space:

2ε̄ij = ūi,j + ūj,i (9)

σ̄ij = 2sḠε̄ij + δijsλ̄ε̄kk (10)
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Figure 1 Normal indentation of a viscoelastic half-space.

σ̄ij,j = 0 (11)

τ̄zr(r, 0, s) = τ̄zθ (r, 0, s) = 0, (0 ≤ r < ∞) (12)

σ̄zz(r, 0, s) = 0, (r > a) (13)

ūz(r, 0, s) = h̄(s) + 1

s

αn∑
α=α1

aαrα, (0 ≤ r ≤ a)

(14)

where a bar over a variable designates its Laplace trans-
formed form, and s is the transform variable.

Comparing with its elastic counterpart [7] and using
the elastic–viscoelastic corresponding principle [8], we
have the vertical load in the Laplace space as

P̄ = 2a
s Ē h̄(s)

1 − (sν̄)2
+ √

π

[
αn∑

α=α1

aα · �
(

2+α
2

)
�

(
3+α

2

)a1+α

]

× Ē

1 − (sν̄)2
(15)

where P(t) is the total load on the indenter. The time-
dependent pressure distribution at the indenter—half-
space interface is given in [9].

Thus, in the Laplace space, we have the following
formation, which is similar to its elastic counterpart
[10]:

dP̄

dh̄
= 2a

s Ē

1 − (sν̄)2
(16)

If Poisson’s ratio is assumed to be a constant, we have
at constant load

h(t) = 1 − ν2

2a
PJ(t) −

√
π

2a

[
αn∑

α=α1

aα · �
(

2+α
2

)
�

(
3+α

2

)a1+α

]

× H (t) (17)

where H (t) is the Heaviside unit step function. In the
derivation, the identity J̄ = 1

s2 Ē
is used.

And, at constant displacement, we have

P(t) =
{

2ah

1 − ν2
+

√
π

1 − ν2

[
αn∑

α=α1

aα · �
(

2+α
2

)
�

(
3+α

2

)a1+α

]}

×E(t) (18)

Equation 17 shows that a constant load indentation
test is a direct measurement of the material’s creep func-
tion; and Equation 18 shows that a constant displace-
ment test is a direct measurement of its stress relaxation
function.

The theoretical solution provides a new approach of
measuring viscoelastic properties of thin films, i.e., the
direct measurements of the stress relaxation function
and creep function through the complete contact in-
dentation tests.
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